
Module - Cloud Architectures (CA)

FWPM Computer Science

10 - Cloud Design Patterns (III)

Prof. Dr. Marcel Tilly
Faculty of Computer Science, Cloud Computing

Vers. 25.6.2025© Technische Hochschule Rosenheim

Agenda for Today

Cloud design pattern

taken from https://pixabay.com

2 / 68© Technische Hochschule Rosenheim

https://pixabay.com/

Asynchronous Request-Response
Decoupling the back-end processing from a front-end host, whereby the back-end processing
must be asynchronous, but the front-end requires a clear response.

3 / 68© Technische Hochschule Rosenheim

Asynchronous request-response

In applications, a synchronous API call can lead to blocking behavior
The work performed by the back-end takes too long. In this case, it is not possible to
wait for the work to complete before responding to the request. This situation is a
potential problem with all synchronous request-response patterns.

Some architectures solve this problem by using a message broker to separate request and
response phases.

This separation is often achieved by using the Queue-Based Load Leveling Pattern.
This separation can enable independent scaling of the client process and back-end
API. However, this separation also introduces additional complexity if the client
requests a success notification, as this step must be asynchronous.

4 / 68© Technische Hochschule Rosenheim

Asynchronous request-response

Solution

The client application makes a synchronous call to the API and triggers a time-consuming process on the back end.

The API responds synchronously as quickly as possible. It returns the status code "HTTP 202 (Accepted)", which confirms that the request
has been received for processing.

The response contains a location reference (UUID) that points to an endpoint (and process) that the client can query to check the result of
the time-consuming operation.

The API transfers the processing to another component, e.g. to a message queue.

While the work is pending, the status endpoint returns "HTTP 202" and "In Progress" (and an estimate).

After the work is complete, the status endpoint can either return a resource indicating completion or redirect to another resource URL. For
example, if the asynchronous operation creates a new resource, the status endpoint would redirect to the URL for that resource.

5 / 68© Technische Hochschule Rosenheim

Asynchronous request-response

Solution

Check HTTP Status Codes: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

6 / 68© Technische Hochschule Rosenheim

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Asynchronous Request-
Response

Consideration

In some scenarios, the client may need to be given the option of canceling a time-
consuming request. In this case, the back-end service must support a form of abort
instruction.

7 / 68© Technische Hochschule Rosenheim

Asynchronous request-response

Use when ...

Client-side code, e.g. browser applications, where it is difficult to provide callback
endpoints (webhooks) or the use of time-intensive connections brings additional
complexity.

Service calls where only the HTTP protocol is available and the return service cannot
trigger callbacks due to client-side firewall restrictions.

Service calls that need to be integrated into legacy architectures that do not support
modern callback technologies such as WebSockets or webhooks.

8 / 68© Technische Hochschule Rosenheim

Asynchronous request-response

Do not use if ...

Instead, you can use a service such as Event Grid or Pub/Sub that was created for
asynchronous notifications.

You can use server-side persistent network connections such as WebSockets or SignalR.
These services can be used to notify the caller of the result.

The network design allows you to open ports to receive asynchronous callbacks or
webhooks.

9 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

Example

The solution contains three functions:

the asynchronous API endpoint (2)
the status endpoint (7)
a back-end function that receives and executes work elements from the queue (5)

10 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

AsyncProcessingWorkAcceptor

The AsyncProcessingWorkAcceptor function implements an endpoint that accepts work items
from a client application and inserts them into a queue for processing.

The function generates a request ID and adds it to the queue message as metadata.
The HTTP response contains a Location header that points to a status endpoint. The
request ID is part of the URL path.

11 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

AsyncProcessingWorkAcceptor

public static class AsyncProcessingWorkAcceptor
{
 [FunctionName("AsyncProcessingWorkAcceptor")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "post", Route = null)] CustomerPOCO customer,
 [ServiceBus("outqueue", Connection = "ServiceBusConnectionAppSetting")] IAsyncCollector<Message> OutMessage, ILogger log)
 {
 if (String.IsNullOrEmpty(customer.id) || String.IsNullOrEmpty(customer.customername))
 {
 return new BadRequestResult();
 }
 string reqid = Guid.NewGuid().ToString();
 string rqs = $"http://{Environment.GetEnvironmentVariable("WEBSITE_HOSTNAME")}/api/RequestStatus/{reqid}";

 var messagePayload = JsonConvert.SerializeObject(customer);
 Message m = new Message(Encoding.UTF8.GetBytes(messagePayload));
 m.UserProperties["RequestGUID"] = reqid;
 m.UserProperties["RequestSubmittedAt"] = DateTime.Now;
 m.UserProperties["RequestStatusURL"] = rqs;

 await OutMessage.AddAsync(m);

 return (ActionResult) new AcceptedResult(rqs, $"Request Accepted for Processing{Environment.NewLine}ProxyStatus: {rqs}");
 }
}

12 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

AsyncProcessingBackgroundWorker

The AsyncProcessingBackgroundWorker function takes over the process from the queue,
executes a few work steps based on the message payload and writes the result to the storage
location.
public static class AsyncProcessingBackgroundWorker
{
 [FunctionName("AsyncProcessingBackgroundWorker")]
 public static void Run(
 [ServiceBusTrigger("outqueue", Connection = "ServiceBusConnectionAppSetting")]Message myQueueItem,
 [Blob("data", FileAccess.ReadWrite, Connection = "StorageConnectionAppSetting")] CloudBlobContainer inputBlob,
 ILogger log)
 {
 // Perform an actual action against the blob data source for the async readers to be able to check against.
 // This is where your actual service worker processing will be performed.

 var id = myQueueItem.UserProperties["RequestGUID"] as string;

 CloudBlockBlob cbb = inputBlob.GetBlockBlobReference($"{id}.blobdata");

 // Now write the results to blob storage.
 cbb.UploadFromByteArrayAsync(myQueueItem.Body, 0, myQueueItem.Body.Length);
 }
}

13 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

AsyncOperationStatusChecker

The AsyncOperationStatusChecker function implements the status endpoint. This function
first checks whether the request has been completed.

If the request has been completed, the function either returns the value or redirects the
command directly to a URL.
If the request is still pending, we should return a "202 Accepted" code with a self-
referencing Location header.

14 / 68© Technische Hochschule Rosenheim

Asynchronous Request-
Response

AsyncOperationStatusChecker

public static class AsyncOperationStatusChecker
{
 [FunctionName("AsyncOperationStatusChecker")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "get", Route = "RequestStatus/{thisGUID}")] HttpRequest req,
 [Blob("data/{thisGuid}.blobdata", FileAccess.Read, Connection = "StorageConnectionAppSetting")] CloudBlockBlob inputBlob, string thisGUID,
 ILogger log)
 {
 // Check to see if the blob is present.
 if (await inputBlob.ExistsAsync())
 {
 // If it's present, depending on the value of the optional "OnComplete" parameter choose what to do.
 return (ActionResult)new OkObjectResult(await inputBlob.DownloadTextAsync());
 }
 else
 {
 // If it's NOT present, check the optional "OnPending" parameter.
 string rqs = $"http://{Environment.GetEnvironmentVariable("WEBSITE_HOSTNAME")}/api/RequestStatus/{thisGUID}";

 // Return an HTTP 202 status code.
 return (ActionResult)new AcceptedResult() { Location = rqs };
 }
 }

15 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor Pattern
Coordinate distributed actions as a single process. If one of the actions is not successful, the
errors should be handled transparently or the executed work should be undone as a whole.

16 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor
Pattern

Problem

An application executes tasks that comprise a series of steps, some of which may call
remote services or access remote resources. The individual steps can be independent of
each other, but they are orchestrated by the application logic that implements the task.

Whenever possible, the application should ensure that the task is executed to completion
and resolve any errors that may occur when accessing remote services or resources.

If the application detects a more long-term error for which no simple recovery is possible,
it must be able to restore the system to a consistent state and ensure integrity for the
entire operation.

17 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor

The pattern "Scheduler-Agent-Supervisor" defines 3 actors.

The Scheduler handles the steps for the task to be executed and orchestrates their execution.
These steps can be combined in a pipeline or a workflow.
The scheduler must ensure that the steps are executed in the correct order.
As each step is executed, the scheduler records the state of the workflow, such as "step not yet started",
"step being executed" or "step completed".
The state information must also contain an upper limit for the time available to complete the step, known
as the time to completion.
If a step requires access to a remote service or resource, the scheduler calls the corresponding agent and
passes it the details of the work to be performed.

18 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor

The Agent includes logic that encapsulates a call to a remote service or access to a remote
resource that is referenced by a step in a task.

Each agent encloses calls to a single service or resource and implements the
appropriate error handling and retry logic (subject to a timeout constraint described
later) (this is an implementation detail of the pattern).

19 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor

The Supervisor monitors the status of the steps in the task that is executed by the
scheduler.

The supervisor is executed at regular intervals (the frequency depends on the
system) and examines the status of the steps managed by the scheduler.
If the supervisor detects a timeout or an error, it prompts the responsible agent to
restore the step or perform the appropriate cleanup action (this may involve
changing the status for a step).
Note that the restore or cleanup actions are implemented by the scheduler and the
agents. The supervisor only requests that these actions are executed.

20 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor
Pattern

Scheduler, Agent and Supervisor are logical components and their physical implementation
depends on the technology used.

21 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor
Pattern

Considerations

The following points should be considered when deciding how to implement this pattern:

This pattern can be difficult to implement and requires extensive testing of all possible failure modes of the system.

The recovery/retry logic implemented by the scheduler is complex and depends on the state information in the state memory. It may also
be necessary to record the information required to implement a balancing transaction in a persistent data store.

It is important how often the supervisor is executed. The supervisor should be executed often enough to prevent unsuccessful steps from
blocking an application for an extended period of time. At the same time, it should not be executed too often to avoid overhead.

The steps processed by an agent can be executed several times. The logic for implementing these steps should be idempotent.

22 / 68© Technische Hochschule Rosenheim

Scheduler Agent Supervisor
Pattern

23 / 68© Technische Hochschule Rosenheim

Monitoring Pattern
Functional checks in an application that external tools can access at regular intervals via
available endpoints. This can help to check the proper execution of applications and services.

24 / 68© Technische Hochschule Rosenheim

Monitoring Pattern

Problem

It is a best practice and often a business requirement to monitor web applications and
back-end services to ensure that they are available and functioning properly.

However, services running in the cloud are more difficult to monitor than on-
premises services.
Lack of control over the hosting environment, and services usually depend on other
services.

There are many factors that affect cloud-based applications, such as network latency,
performance and availability of the underlying compute and storage systems and the
network bandwidth between them.

These factors can cause the service to fail in whole or in part. You must therefore
check at regular intervals whether the service is working properly.

25 / 68© Technische Hochschule Rosenheim

Monitoring Pattern

Solution

Implement integrity monitoring by sending requests to an endpoint of the application. The
application must perform the necessary checks and return a status.

An integrity monitoring check typically combines two factors:

The checks (if any) performed by the application or service in response to the request to
verify the integrity of the endpoint.
The analysis of the results by the tool or framework that performs the integrity check.

The response code indicates the status of the application and optionally the components or
services used by it. The wait time or response time check is performed by the monitoring tool
or framework.

26 / 68© Technische Hochschule Rosenheim

Monitoring pattern

Solution

27 / 68© Technische Hochschule Rosenheim

Task

Please note down typical tests that could be carried out in your application!

Go to: https://zumpad.zum.de/p/ca2021

28 / 68© Technische Hochschule Rosenheim

https://zumpad.zum.de/p/ca2021

Monitoring Pattern

Considerations 1/2

Validation of the response: For example, is just the status code 200 (OK) sufficient to
confirm that the application is working properly?

Endpoint: Whether to use the same endpoint for monitoring that is used for general
access, but selecting a specific path on the general access endpoint that is intended for
integrity checking, e.g. "/HealthCheck/{GUID}/". In this way, some functional tests in the
application can be performed by the monitoring tools, such as adding a new user
registration, logging in and placing a test order, while checking that the general access
endpoint is available.

The type of information to be collected in the service in response to monitoring requests
and how this information can be returned.

29 / 68© Technische Hochschule Rosenheim

Monitoring Pattern

Considerations 2/2

Scope of information to be collected: An excessive processing load during the check can
slow down the application and thus have an impact on other users.

Configure the security of the monitoring endpoints to protect against public access. This
can expose the application to malicious attacks, compromise the application due to the
disclosure of sensitive information or fall victim to Denial of Service (DoS) attacks.

Ensure that the monitoring agent is working properly: One approach is to make an
endpoint available that simply returns a value from the application configuration or a
random value that can be used to test the agent.

30 / 68© Technische Hochschule Rosenheim

Monitoring Pattern

Use of this pattern

This pattern is helpful:

Monitoring websites and web applications for availability.

Monitoring websites and web applications for proper operation.

Monitoring of mid-level or shared services to detect and isolate an error that could disrupt
other applications.

31 / 68© Technische Hochschule Rosenheim

External Configuration Store
Move configuration information from the application deployment package to a central storage
location.

This can make it easier to manage and control configuration data and share configuration
data across all applications and application instances.

32 / 68© Technische Hochschule Rosenheim

Context

Most application runtime environments contain configuration information stored in files
that are provided with the application.

In some cases, these files can be edited to change the behavior of the application after it
has been deployed. However, after changes are made to the configuration, the
application must be redeployed, often resulting in unacceptable downtime and other
administrative overhead.

Local configuration files also restrict configuration to a single application, but occasionally
it would be useful to share configuration settings across multiple applications.

Examples: Database connections, UI design information, the URLs of endpoints

It can be challenging to manage changes to configurations across multiple running
instances of the application, especially in a cloud-hosted scenario.

33 / 68© Technische Hochschule Rosenheim

Solution

Save configuration information in an external memory

The memory has an interface for retrieving and changing the configuration settings

The type of external storage depends on the hosting and runtime environment of the
application.

In a cloud-hosted scenario, it is usually a cloud-based service
the service is abstracted from the actual storage

The backup storage should have an interface that allows consistent, user-friendly access
(REST).

The implementation may also need to authorize user access to protect configuration
data
Management of multiple versions of the configuration (such as development, staging
and production versions, each including multiple releases) should be possible

34 / 68© Technische Hochschule Rosenheim

Caching

Many integrated configuration systems read the data when the application is started and
cache the data in memory to enable fast access and minimize the impact on application
performance.

Depending on the type of backup memory used and the latency of this memory, it may
make sense to implement a caching mechanism in the external configuration memory.

35 / 68© Technische Hochschule Rosenheim

Use of this pattern

Use when...

... for configuration settings that are shared between different applications and
application instances, or where a default configuration needs to be enforced between
multiple applications and application instances.

... as a method to simplify the management of multiple applications and optionally
monitor the use of configuration settings by logging some or all access types to the
configuration store.

Sample implementation can be found here:

https://github.com/mspnp/cloud-design-patterns/tree/master/external-configuration-
store

36 / 68© Technische Hochschule Rosenheim

https://github.com/mspnp/cloud-design-patterns/tree/master/external-configuration-store

Azure Key Vault
Azure Key Vault is a tool for securely storing and accessing secrets.

37 / 68© Technische Hochschule Rosenheim

Context

The following problems can be solved with Azure Key Vault:

Secret management: Azure Key Vault enables secure storage and precise control of
access to tokens, passwords, certificates, API keys, and other secrets.

Key management: Azure Key Vault can also be used as a key management solution.
Azure Key Vault makes it easy to create and manage the encryption keys used to encrypt
your data.

Certificate management: In addition, the Azure Key Vault service allows you to
conveniently provision and manage public and private Secure Sockets Layer/Transport
Layer Security (SSL/TLS) certificates for use with Azure and your internal connected
resources.

Storing secrets: The secrets and keys are encrypted and protected.

38 / 68© Technische Hochschule Rosenheim

Why?

Centralize application secrets

By centralizing the storage of application secrets in Azure Key Vault, the distribution can
be controlled (see External Configuration Store).

With a Key Vault, risks of unintentional disclosure of secrets can be reduced.

Application developers can store security information in the Key Vault and no longer
store it in the application.
If security information no longer needs to be stored in applications, there is no need
to include this information in the code.
An example: Suppose an application needs to connect to a database. Instead of
storing the connection string in the app code, you can store it securely in the Key
Vault.
Applications can securely access required information using URIs. These URIs allow
applications to retrieve specific versions of a secret key.

39 / 68© Technische Hochschule Rosenheim

Why?

Secure storage of secrets and keys

Secrets and keys are protected with industry-standard algorithms, key lengths and
hardware security modules (HSMs). The HSMs used fulfill the requirements of FIPS 140-2,
Level 2 (Federal Information Processing Standards).

A caller (user or application) can only access a Key Vault after proper authentication and
authorization.

During authentication, the identity of the caller is determined.
Authorization, on the other hand, determines which operations the caller is allowed
to perform.

Authentication takes place via Azure Active Directory.

Role-based access control (RBAC) can be used for authorization.

Data in the Key Vault cannot be viewed or extracted by third parties.

40 / 68© Technische Hochschule Rosenheim

Why?

Monitoring access and usage

The Key Vault can be used to monitor how and when keys and secrets are accessed.

Coupling with other services:

Archiving in a storage account
Streaming to an event hub
Sending the logs to Azure Monitor logs

41 / 68© Technische Hochschule Rosenheim

Why?

Easier management of application secrets
Eliminate the need for internal knowledge of hardware security models

Replication of the contents of a Key Vault instance within a region and in a secondary
region.

Data replication ensures high availability of information and failover can be triggered
without administrator intervention.

Provide standard Azure management options via the portal, Azure command line
interface and PowerShell

Automate certain tasks related to certificates you acquire from public certificate
authorities (e.g. registration and renewal)

42 / 68© Technische Hochschule Rosenheim

Create a key vault

Create a Key Vault instance:

Name: Give your key vault a unique name.
Resource Group: RG in which the Key Vault will be created.
Location: Data center

$ az keyvault create --name "Infca-Vault" --resource-group "inf-ca"
 --location westeurope

43 / 68© Technische Hochschule Rosenheim

Add a secret

A secret can be added to the Key Vault with a few additional steps.

Example:

A password can then be used by an application.
The password should be called ExamplePassword and contain the value
hVFkk965BuUv.

$ az keyvault secret set --vault-name "Infca-Vault" --name "ExamplePassword"
 --value "hVFkk965BuUv"

44 / 68© Technische Hochschule Rosenheim

Retrieve a secret

$ az keyvault secret show --name "ExamplePassword"
--vault-name "Infca-Vault"

or

https://Infca-Vault.vault.azure.net/secrets/ExamplePassword

45 / 68© Technische Hochschule Rosenheim

Best Practices (1/2)

Control access to your key vault

Block access to your subscription, resource group and key vaults (RBAC).
Create access policies for each key vault.
Use the principal with the least privileges to grant access.
Enable the firewall and VNET service endpoints.

Use separate key vaults: It is recommended to use one Key Vault per application and
environment (development, pre-production and production).

46 / 68© Technische Hochschule Rosenheim

Best Practices (2/2)

Backup: Make sure you regularly backup your Key Vault when updating/deleting/creating
items in a Key Vault.

Enable logging: Enable logging for your Key Vault.

Enable recovery options

Activate temporary deletion.
Activate delete protection if you want to protect yourself from forced deletion of the
secret/key vault even after activating temporary deletion.

47 / 68© Technische Hochschule Rosenheim

Key vault authentication

48 / 68© Technische Hochschule Rosenheim

Code samples

https://docs.microsoft.com/de-de/samples/browse/?expanded=azure&products=azure-key-
vault

49 / 68© Technische Hochschule Rosenheim

https://docs.microsoft.com/de-de/samples/browse/?expanded=azure&products=azure-key-vault

Sharding
Divide a data store into a set of horizontal partitions or shards. This can improve scalability
when storing and accessing large amounts of data.

50 / 68© Technische Hochschule Rosenheim

Context

A data store hosted by a single server may be subject to the following restrictions:

Storage space: A data store for a large-scale cloud application is expected to contain a
huge amount of data, which could increase significantly over time. A server normally only
offers a limited amount of data storage.

Computing resources: A single server hosting the data store may not be able to provide
the required compute power.

Network bandwidth: It is possible that the amount of network traffic exceeds the
capacity of the network used to connect to the server, resulting in request errors.

Geography: It may be necessary to store data generated by certain users located in the
same region as those users for legal, compliance or performance reasons, or to reduce the
latency of data access.

51 / 68© Technische Hochschule Rosenheim

Solution

Divide the data storage into horizontal partitions or shards.

Each shard has the same schema, but has its own unique subset of the data.

A shard is a standalone data store (it can contain the data for many entities of different
types) that runs on a server that acts as a storage node.

52 / 68© Technische Hochschule Rosenheim

Shards

This pattern has the following advantages:

You can scale up the system horizontally by adding more shards that are executed on
additional memory nodes.

A system can use standard hardware for each storage node instead of specialized and
expensive computers.

You can reduce conflicts and improve performance by distributing the workload across
multiple shards.

In the cloud, shards can be physically located near the users accessing the data.

53 / 68© Technische Hochschule Rosenheim

Shards

A shard typically contains elements that fall within a certain range, which is determined
by at least one attribute of the data.

These attributes form the shard key (also known as the partition key).

The shard key should be static. It should not be based on data that may change.

54 / 68© Technische Hochschule Rosenheim

Physical Setup

Sharding is used to arrange the data physically. When an application stores and retrieves
data, the sharding logic directs the application to the appropriate shard.

This sharding logic can be implemented as part of the data access code in the
application, or it can be implemented by the data storage system if it obviously
supports sharding.

The abstraction of the physical locations of the data in the sharding logic provides a high
degree of control over which shards contain which data.

It also allows data to be migrated between shards without having to rework the
business logic of an application if the data in the shards needs to be redistributed
later (e.g. if the shards are unbalanced).
The disadvantage here is the additional data access effort required to determine the
location of the individual data elements when they are retrieved.

55 / 68© Technische Hochschule Rosenheim

Access via shards

To ensure optimal performance and scalability, it is important to split the data in such a
way that it is suitable for the queries executed by the application.

In many cases, it is unlikely that the sharding scheme will exactly match the requirements
of each query.

For example, in a multi-instance system, an application may need to retrieve the
client data via the client ID. However, it may also need to search for this data using
another attribute, e.g. client name or location. To handle these situations, implement
a sharding strategy with a shard key that supports the most common queries.

If queries regularly retrieve data using a combination of attribute values, composite shard
keys can be defined by linking attributes together.

56 / 68© Technische Hochschule Rosenheim

Sharding strategies

Search strategy: In this strategy, the sharding logic implements a mapping that forwards a
data request to the shard containing that data using the shard key.

In a multi-instance application, all of a client's data can be stored in a shard using the
client ID as the shard key. Multiple clients can share the same shard, but the data for a
single client is not distributed across multiple shards.

57 / 68© Technische Hochschule Rosenheim

Sharding strategies

Sharding strategy: In this strategy, related elements are grouped in the same shard and
arranged by shard key. The shard keys are consecutive.

For example, if an application regularly needs to find all orders placed in a particular
month, this data can be retrieved more quickly if all orders for a month are stored in the
same shard by date and time.

58 / 68© Technische Hochschule Rosenheim

Sharding strategies

Hash strategy: The aim of this strategy is to reduce the probability of so-called hotspots
(shards that are disproportionately loaded). Distributes the data across the shards in a way
that achieves a balance between the size of the individual shards and the average workload
that occurs for the individual shards.

The sharding logic calculates the shard for storing an element based on a hash of at least
one attribute of the data. The selected hash function should distribute the data evenly
across the shards, possibly by introducing a random element into the calculation.

59 / 68© Technische Hochschule Rosenheim

Pros and cons

Search strategy

Provides greater control over the configuration and use of shards

Using virtual shards reduces the impact of redistributing data as new physical partitions
can be added to balance workloads.

The mapping between a virtual shard and the physical partitions that implement the
shard can be changed without affecting the application code that uses a shard key to
store and retrieve data.

Searching for shard locations can cause additional overhead.

60 / 68© Technische Hochschule Rosenheim

Pros and cons

Divisional strategy

This strategy is easy to implement and works well for range queries as they can often
retrieve multiple data elements from a single shard in a single operation.

This strategy offers simpler data management. For example, if users are in the same
region in the same shard, updates can be scheduled in the respective time zones based on
the local workload and demand pattern.

However, this strategy does not provide optimal balancing between shards.

Rebalancing for shards is difficult and may not resolve the issue of uneven workloads if
the majority of activity is for adjacent shard keys.

61 / 68© Technische Hochschule Rosenheim

Pros and cons

Hash strategy

This strategy offers a higher probability that data and workloads will be distributed more
evenly.

The routing of requests can be carried out directly via the hash function. It is not
necessary to manage an assignment.

The hash calculation may require additional effort.

Redistribution to the shards is also difficult.

62 / 68© Technische Hochschule Rosenheim

Example

The following example in C# uses a series of SQL Server databases that act as shards.

Each database contains a subset of the data used by an application.

The application retrieves data distributed across shards using its own sharding logic (this
is an example of a fan-out query).

63 / 68© Technische Hochschule Rosenheim

Code

The details of the data contained in each shard are returned by a method called
GetShards.

This method returns an enumerable list of ShardInformation objects, where the
ShardInformation type contains an identifier for each shard and the SQL Server
connection string that an application should use to connect to the shard (the connection
strings are not shown in the code example).

private IEnumerable<ShardInformation> GetShards()
{
 // This retrieves the connection information from a shard store
 // (commonly a root database).
 return new[]
 {
 new ShardInformation
 {
 Id = 1, ConnectionString = ...
 },
 new ShardInformation
 {
 Id = 2, ConnectionString = ...
 }
 };
}

64 / 68© Technische Hochschule Rosenheim

Code

// Retrieve the shards as a ShardInformation[] instance.
var shards = GetShards();

var results = new ConcurrentBag<string>();

// Execute the query against each shard in the shard list.
// This list would typically be retrieved from configuration
// or from a root/master shard store.
Parallel.ForEach(shards, shard =>
{
 // NOTE: Transient fault handling isn't included,
 // but should be incorporated when used in a real world application.
 using (var con = new SqlConnection(shard.ConnectionString))
 {
 con.Open();
 var cmd = new SqlCommand("SELECT ... FROM ...", con);

 Trace.TraceInformation("Executing command against shard: {0}", shard.Id);

 var reader = cmd.ExecuteReader();
 // Read the results in to a thread-safe data structure.
 while (reader.Read())
 {
 results.Add(reader.GetString(0));
 }
 }
});

Trace.TraceInformation("Fanout query complete - Record Count: {0}",
 results.Count);

65 / 68© Technische Hochschule Rosenheim

Summary

Lessons Learned:

Cloud design patterns
Asynchronous Request-Response
Scheduler Agent Supervisor Pattern
Monitoring
Configuration and Key Vault
Sharding

66 / 68© Technische Hochschule Rosenheim

An almost final though ...

67 / 68© Technische Hochschule Rosenheim

Task

Exercise

https://inf-git.fh-rosenheim.de/inf-ca/10_uebung

Monitor your application:

/ping : Returns a sign of life
/healthcheck: Returns information about the status of your solution

Project

Implement!!!

68 / 68© Technische Hochschule Rosenheim

https://inf-git.fh-rosenheim.de/inf-ca/10_uebung

